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A B S T R A C T

The combination of distinctive physicochemical properties of biofuels and recent engine technologies offer
benefits in terms of efficiency improvement and emissions reduction. The recent development in butanol bio-
based production pathways encourage researchers to study their combustion characteristics. This paper ex-
perimentally evaluates the combustion and emissions of a gasoline direct injection (GDI) engine fueled with the
butanol isomer/gasoline surrogate blends, in which primary reference fuel (PRF) and toluene primary reference
fuel (TPRF) are selected as the gasoline surrogates, respectively. The flame propagation behaviors, in-cylinder
pressure, apparent heat release rate, along with PN emissions from this optical GDI engine are discussed. First,
butanol addition to the gasoline surrogates is found to slow down flame propagation, reduce peak cylinder
pressure and heat release rate, and extend ignition delay and combustion duration. Further, among the four
butanol isomers, n-butanol and tert-butanol are the most and least reactive fuels, respectively, whereas iso-
butanol and sec-butanol show reactivities in between, as supported by the measured flame propagation and
pressure traces, calculated heat release rates, as well as time scales describing the combustion progress, e.g.
ignition delay and combustion duration. Finally, butanol addition reduces the PN emissions from the GDI engine,
and the PN emissions reduction capacity of the four butanol isomers ranks as sec-butanol > iso-butanol > n-
butanol > tert-butanol. Also, compared to the PRF/butanol blends, the PN emissions are reduced to a less extent
when butanol is blended with TPRF.

1. Introduction

The increasing utilization of gasoline direct injection (GDI) engines
in passenger cars is attributed to such advantages as lower fuel con-
sumption, precise transient response, better knock resistance, and im-
proved combustion efficiency. However, increased PM emissions is one
drawback of GDI engines [1]. The primary reason for the higher PM in
GDI engines is spray-wall (piston, cylinder, and valve) interaction,
which leads to lower fuel vaporization rates and pool fires [2]. Con-
sequently, more locally fuel-rich zones are formed within the flame area
and promote soot formation. Various methods have been adopted to
solve this problem. One of them is to utilize oxygenated fuels, such as
alcohols, and their physicochemical characteristics to enhance in-cy-
linder combustion and soot oxidation [3–5].

Alcohols have been investigated during the last few decades as an
alternative fuel for SI engines [6–8]. Many researchers studied me-
thanol and ethanol and their effects on SI engine combustions and

emissions [9–13]. Methanol and ethanol have the advantages of high
oxygen contents and sustainable production methods from renewable
resources [6,8]. Nevertheless, methanol and ethanol have low energy
densities, high fuel consumption, low water tolerances, and high cor-
rosion rates.

Butanol is another alcohol fuel of interests. Compared to ethanol
and methanol, butanol demonstrates a higher calorific value and a
lower corrosion rate [6]. Butanol has four different molecular struc-
tures, denoted as n-butanol, sec-butanol, tert-butanol, and iso-butanol,
as shown in Fig. 1. Different molecular structures (straight or branched)
and their OH locations are expected to affect the combustion and
emissions formation in internal combustion engines [14–16]. Specifi-
cally, tert-butanol, iso-butanol and sec-butanol reveal a higher octane
index but reduced flame velocity compared to n-butanol [14,17,18].
Fan et al. [14] reported that the RON of PRF increased with butanol
isomers addition in the following order: iso-butanol > sec-butanol >
n-butanol > tert-butanol. They pointed that the RON of TPRF
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